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This paper reports a novel hyperbolic grid-generation with an
inherent adaptive dissipation (HGAD), which is capable of improving
the oscillation and overlapping of grid lines. n the present work
upwinding differencing is applied 1o discretize the hyperbolic sys-
tem and, thereby, to develop the adaptive dissipation coefficient.
Complex configurations with the features of geometric discontinu-
ity, exceptional concavity and convexity are used as the test cases
for comparison of the present HGAD procedure with the conven-
tional hyperbolic and eitiptic ones. The results reveal that the HGAD
method is superior in orthogonality and smoothness of the grid
system. |n addition, the computational efficiency of the flow solver
may be improved by using the present HGAD procedure. 1995
Academic Press, Inc.

INTRODUCTION

In the past few decades numerical computation has become
a powerful tool in the study of fluid dynamics and, especially,
in the aerodynamics design of flying vehicles. Although the
grid generation plays only a supporting role in computational
fluid dynamics (CFD), it is also a crucial point in the efficiency
and accuracy of the numerical predictions. Usually, grid cluster-
ing control is needed for high resolution of local areas, and
orthogonality of the grid lines is particularly important for the
calculations of the fluxes and gradients of the field properties.
Generally speaking, there are two kinds of grid generation
wechniques, algebraic generation, and PDE (partial differential
equations) generation of grids. The former is restricted to simple
computational domains; the latter can be used for more complex
configurations. According to the classification of the grid-gener-
ating PDE system, the PDE methods can be further divided
into three categories, corresponding to elliptic systems of equi-
librium type and parabolic and hyperbolic ones of marching
{or propagation} type.

The elliptic grids can be generated by solving the Laplace
or Poisson equation through an iterative procedure. The grid
systems generated in this way have the merit of grid-density
smoothness but with the penalty of time-consumption, while
the orthogonality of the grid lines cannot be guaranteed. The
hyperbolic grid generator includes orthogonality and cell-vol-
ume {(or cell-area in two-dimensional cases) constraints and is

solved by a marching procedure in a specified direction. This
class of grid methods has the following features: (1) the surface
grid distribution can be specitied as desired; (2) the resulting
grid system is orthogonal at the boundary and nearly so else-
where; and (3) it is efficient in terms of computer time and
memory for being non-iterative. The parabotic grid method lies
between the elliptic and hyperbolic ones. A general discussion
about various grid systems can be found in some review articles
[L 2]

Since the hyperbolic method is essentially a marching proce-
dure, the specification of the entire boundary is not allowed
and, therefore, the method is not appropriate for the computation
of internal and closed flow systems. Nevertheless the hyperbolic
method is very useful in the numerical investigations of external
aerodynamics, for which the grid points are originally distrib-
uted only on the sclid or inner boundary, and then are marched
outward to construct the whole field grid until a sufficiently
large far-field free boundary is reached. This class of methods
works well, provided that the boundary is free from slope
discontinuities. However, the geometric discontinuities at the
inner boundaries may propagate into the grid field. Introducing
artificial dissipation can reduce this drawback. Unfortunately,
there is no general principle for the determination of the dissipa-
tion in numerical solution of such a hyperbolic system. Too
small dissipation will not help prevent grid oscillations, but
excess dissipation may cause crossing or overlapping of the
grid lines,

Studies of hyperbolic grid generation can be traced back to
the McNally-Graves procedure [3, 41, Later on, Steger and
Chaussee [5] presented the first systematic analysis of hyper-
bolic grid generaticn for two-dimensional configurations. The
method was then extended to a three-dimensional (£, i, £) form
with the use of dissipation terms in the € and v directions [6,
7]. A comparative study of algebraic, elliptic, and hyperbolic
grids in PNS solutions of a hypersonic flow was performed
by Kaul and Chaussee [8]. It was concluded that the shortest
computational time was taken for flow solution on the hyper-
bolic grid system. By using a blunt body as an illustrative
example, Hoffmann et al. [9] developed simple automatic pro-
cedures for grid control of two hyperbolic grid techniques, cell-
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FIG. 1.

area and arc-length schemes, proposed in Ref. [10]. Combina-
tion of hyperbolic grid generation with an adaptive strategy
was studied by Klopfer [11].

In the present work the upwinding schemes [12], which have
the merit of inherent dissipation, are applied to discretize the
grid generator of hyperbolic nature. In the present study the

HGAD grid around a cross section of delta-wing with 60° deflection of leading-edge vortex-fiap (LEVF): (a) whole domain; (b) near-field grid.

inherent dissipation device is developed in the discretization.
The dissipation is a field property and alters automatically. The
tendency toward oscillation and overlapping of the grid lines
can then be reduced. Configurations with geometric discontinu-
ities and exceptional concavities are used as test cases for
compariscon of the present HGAD procedure and the conven-
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FIG. 2. Explicit hyperbolic grid for (a) axisymmetric projectile, (b) delta wing with 60° LEVF.



HYPERBOLIC GRID WITH ADAPTIVE DISSIPATION

tional hyperbolic and elliptic ones. The computational effi-
ciency is further examined by using the present HGAD proce-
dure in the solution of a transonic flow field.

THEORETICAL ANALYSIS

The governing equations for two-dimensional grid genera-
tion are

Xexg+ yeyn =0 {n
XeYa T VX =V, (2)

where x and y are the Cartesian coordinates in the physical
plane, £ and % are coordinates in the transformed plane, and
V stands for the grid volume. Equations (1) and (2) are the
orthogonality condition and the cell-volume control equations,
respectively. After performing quasi-linearization on the sys-
tem, one has

AW, + BW, =T, 3)

0
V= [V+ VO]

in which x° »°, and V° represent known values, Let the grid
cells form and expand outward in the n-direction, Eq. (3) can
then be cast into the form
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W, + CW,=S. (4a)

InEq. (42), C=B'A, 8 =B'V,and C, o, and B are

C=——
x4 yY

l o
(6 8] amseusms,
B =xiyy + 1oyt

The eigenvalues of matrix C are both real, ie., A; =
*ia? + ﬁz);'(ﬁ’; + y%z)]‘” and A, = —A, = A. This defines two
diagonal matrices, viz. A* = diag[A,, 0] and A~ = diag[0, A,]
such that A = A* + A~ and |A] = A* — A~. The Jacobian
matrix C in Eq. (4a) can be expressed as C = C' + C7,
where € = RA'R™!' = (C + AI)/2 and C- = RA'R =
(C — AI)/2. Accordingly, the relation |C| = C* — C~ = Al
results.

Discretization by Upwind Scheme

Upon rewriting Eg. (4a) in conservation form
WwW,+F.=85; (4b)
and using the upwind schemes of Roe, Osher, and Steger-
Warming [12], the corresponding flux (F) formulas are
Roe,

F(Wy, W) = %[F(WL) + F(Wp)) ~% \C\ {(We — W), (5

Osher,

F(We, Wy) = $[F(W,) + FWl =3 [ *|CaW: (©)

rr i ! T

—

FIG. 3. Conventional hyperbolic grid with {a) € = 0, (b) £ = 0.3.
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Steger—Warming (flux-vector splitting, FVS),

F(Wr, W) = C"W + C" Wy, (7N

wherein F(W,) = CW_ and F{(W,) = CW;. By setting A£
= AT] = 1 follows that F§ = Fin — F;_Ug. From Eqs.

(5) and (6), Roe and Osher schemes, an identical form
follows, viz,

F§=% (CW,, + CW,) — |Cli+ll2(wi+l — W)l

8
CH(CWiy + CW) = | W, = Wil O

while the FVS scheme gives

F;= (CW, + CW,.)— (C"W,_, + CW) 9

which, by introducing the definitions of C* and €~ into (9),
again leads to Eq. (8). Substituting F, and (Wn); = Wit —

W into (4b), an implicit form of discretization can be formu-
lated,

—SCWI A+ Wit + 3 C Wi = 817+ Wi 3 [|Climin Wi
_(lC‘i—lfz + |C|;+1!2)Wf’ + |C|i+112wf’+1],

(10)

2.
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in which |CI,‘+|,'1 = /\,‘H_Q and |C|,‘7112 = A with the follow-
ing options:

(@) A = VA A Ajn =V A.EA-H;
) Acin = oy + AV, Ay = (b + A2
€} Ain = Ain = A,

where (c) is a rather simple choice for evaluation of eigenvalue
A’s. In the preliminary numerical tests, no significant difference
was found in the computational results with the above three
kinds of A-evaluations. Therefore, by using (¢}, Eq. (10) can
be written in a simple form,

- %Cw:’rl] + W?-H + %CW?:II = S?+l + W{! (11)

A7
5 [WE = 2W + Wa .

Adaptive Dissipation

The last term on right-hand side of Eq. (11) is an inherent
second-order dissipation term. Examining the corresponding
equations in the previous work, e.g., Ref. [5], the numerical
dissipation term is artificially introduced and it may be second-
or fourth-order, e.g.,

artificial dissipation = g(AV)) W?

(12)
or

= s(A V)W

0.1

0.0

0.1
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FIG. 4. Equi-dissipation contours for HGATD grid in Fig. 1: (a) near-field of the wing section; (b) close-up view near the wing-tip.



HYPERBOLIC GRID WITH ADAPTIVE DISSIPATION

FIG. 5. HGAD grid with exceptional concavity,

wherein = is the dissipation coefficient, chosen according to
some slated rule, and A and V are forward and backward
difference operators, respectively. The present second-order
dissipation term is called adaptive dissipation, i.e.,

adaptive dissipation = § AHA V)W, (13)
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and emerges from the analysis presented above. The adaptive
dissipation coefficient A} is the eigenvalue of the Jacobian
matric C which comes from the Euler-like equation (4b),
and it can be calculated directly rather than arbitrarily chosen
or guessed.

RESULTS AND DISCUSSION

Comparison of the Various Discretizations

In the discretization of the grid generation, the Jacobian
matrix C is calculated by the use of the local information
of the ith point rather than by using the signals coming
from the neighboring points. In our experience, the calculation
of C in the latter way may result overlap of the grid lines.

To study the effects of various discretizations, implicit and
explicit, the two formulations

= HC + AW+ I+ AW + HC — AW
= 8§ + Wr (14)
and
atl — L P n
W= HC 4 AW (s)

+ (L~ AW = HC — ADWE,, + 7

are in addition to Eq. (11). Equation (14) is also implicit, with

the dissipation terms at the (n + 1)th level and moved to the

left-hand side, while Eq. (15) is essentially explicit.
Generally, the three formulations, Eqgs. (11), {14), and (15),

a T

HYPEREOLIC ELLIPTIC

FIG. 6. Comparison of HGAD and elliptic grids: (a) near-fields of HGAD (upper half) and clliptic (lower half} grids; (b) outer boundaries.
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all can produce acceptable grids for configurations of relatively
smooth boundary. To examine the performance of the various
discretizations, a cross section of a delta wing with 60° deflection
of the leading-edge vortex flap is taken as an example. This two-
dimensional configuration is a challenge to the grid generation
for its features of concavity, convexity, sharp corner, and sharp
edge. Equations (11) and (14) generate almost the same grid sys-
tems as shown in Fig. 1, and the resultant grid is fairly smooth,
orthogonal and the clustering is also well controlled. Although
the explicit scheme may work well as the implicit ones for a sim-
ple convex configuration such as ordnance projectile in Fig. 2a, it
fails to generdte an acceptable grid for the complex configuration
shown in Fig. 2b. In summary, Eq. (11} is most desirable among
the three and, therefore, the focus will be on this discretization
in the remainder of the paper.

Comparison of the Inherent and Artificial Dissipations

Consider the artificial dissipation used in the conventional hy-
perbolic grid generation, Figs. 3a and 3b present the results for
the same configuration with the dissipation factor £ = 0 and 0.3,
respectively. Without dissipation, £ = 0, the grid lines oscillate
especially in the far field as shown in Fig. 3a. For the case with
e = 0.3 in Fig. 3b, the oscillations are suppressed but the grid
lines will deviate from the concave boundary and densely cluster
to the convex corner. In the worst case, the grid lines may inter-
sect with the convex boundary. The determination of the artificial
dissipation is a crucial point for this class of hyperbolic grid gen-
erations; trial-and-error seems to be the only possible way to de-
termine a proper value of the dissipation factor .

Alternatively, Fig. 4 presents the equi-dissipation (A%/V%)
contours for the hyperbolic grid shown in Fig. 1, which is
generated by the present HGAD method. Since V® has been
involved as a multiplier in the calculations of x% and y9,
the dissipation A} increases with the increasing V°. To extract
the real local dissipation, it is noted that A} is normalized
by VO In Fig. 4a, it is observed that the inherent dissipation
is a field property and varies point-by-point in the whole
domain, and the values diminish as the grid grows toward
far field. The larger values and gradients of the dissipation
are presented in the near region beneath the wing. Figure
4b shows the close-up view of the dissipation contours near
the tip region. For the extremely sharp edge, the relatively
higher dissipation appears at the vicinity of the wing tip.
Unlike the previous hyperbolic grid generations, however,
the most striking feature of the present method is the adaptabil-
ity of the dissipation device.

Specification of Cell Area

Specification of the cell area is an important factor for the
growth of the whole grid system. Usually, a circle of the same
peripheral length as the physical boundary is used for distribut-
ing points on the body. By setting the clustering function and
the first-level cells adjacent to the boundary, the cell area can

TAI YIN, AND SOONG

be controlled [5]. Just like the disturbance produced by a closed
body on the water surface, the wave front near the body has a
shape similar to that of the solid boundary, while the wave
front approaches a circle as it propagates outward. The near-
field wave front may become irregular if the solid body has
geomelric discontinuities and exceptional concavities, as the
above-mentioned flapped wing. Although the dissipation is
helpful, if the difference between the boundary slopes around
the discontinuity is sufficiently large, the initial cell-area speci-
fication described above may fail to generate an acceptable
grid. Under this circumstance, replacing the vertex or tip of
the sharp corner or edge by two closely neighboring points is
a valid way to alleviate the large slope-change on the boundary
surface. Figure 1b is a successful example of this strategy.
Alternatively, the first-level cell-area can be obtained by another
method, e.g., the algebraic method, to obtain a better grid. In
cases where cell-area control is extremely difficult, a special
adjustment for some cells adjacent to the boundary may have
to be employed. A few preliminary test runs are helpful for
providing some clues to the determination of proper cell-area
input. The use of this procedure is shown in the case of Fig. 5.

Numerical Computations on HGAD and Elliptic Grids

To evaluate the performance of the present HGAD grid,
computations of the axisymmetric flow field around a secant-
ogive-cylinder-bottail proiectile at freestream Mach number
0.908 and Reynolds number 4.5 X 10 were carried out. The
Navier—Stokes flow solver based on the Roe’s upwinding devel-

1.30 -
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0.50 " . .
0.0 20 40 6.0
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FIG, 7. Calculated and measured surface pressure distributions on the
projectile at freestream Mach number = 0.908 and Reynolds number =
4.5 X 100
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FIG. 8. Convergence history of flow solutions on various grids.

oped in a previous study [14] was used. The Baldwin-Lomax
algebraic model was used for sunulation of turbulence. The
HGAD grids of 128 X 64 and 96 X 84 and the elliptic grid
of 128 X 64 were employed for comparison. In Fig. 6a near-
field hyperbolic and elliptic grids are presented in the upper
and lower half planes, respectively. Obviously, the HGAD grid
is of better orthogonality in the near-wall region. The outer
boundaries for the two grid systems are shown in Fig. 6b. The
calculated surface pressure distributions on the varions grids
are plotted in Fig. 7 and compared with the measured data [15].
Due to the sparseness of the grid near the projectile nose, the
solution on the HGAD 96 X 84 grid presents a large discrepancy
of surface pressure in the nose region. For the cases of the finer
grids (128 X 64), the solution on HGAD is more accurate than
that on the elliptic one. 1t is attributed to the characteristic of
the orthogonality, which is of importance in the calculations
of boundary vorticity and, in turn, in turbulence modeling,

Figure 8 shows the convergence history in the computations.
It reveals that the computational efficiency can be improved
by using the present HGAD grids.
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CONCLUDING REMARKS

A novel hyperbelic grid generation procedure has been devel-
oped. Based on the above results the following conclusions can
be drawn. Besides the non-iterative feature, the present HGAD
method has the merits of inherent adaptive dissipation, resulting
in better smoothness and orthogonality of the grid. These fea-
tures improve the performance of the conventional hyperbolic
grid schemes. A comparison between the numerical solutions
on HGAD and elliptic grids demonstrates that the use of the
HGAD grid in CFD cannot only improve accuracy but also
computational efficiency. It is expected that the present HGAD
method can also be extended to three-dimensional grid gener-
ation.
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